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Figure 1: Example interaction with SenseiPen: (a) A user starts a voice interaction by double tapping the pen, (b) the system
captures and processes verbal prompts with image and text coordinates via its vision system, sending them to a large language
model. Next, (c) the platform’s synthesizer crafts a multimodal response, combining verbal explanations with force feedback
and visual cues.

Abstract
Advances in large language models (LLMs) offer new possibilities
for multimodal information retrieval. Yet, the concept of transform-
ing a language model into a haptic agent remains underexplored.
We introduce a novel platform -SenseiPen- that enriches LLM inter-
actions via voice, pen input, and haptic force feedback. SenseiPen
is a handheld autonomous haptic agent that takes user queries via
voice and pen input on a tablet, understands the input using GPT-4V
(vision-preview), and responds with voice, visual cues, and force
feedback. We investigated SenseiPen’s performance and user expe-
rience in a lab-based study with 16 users. The study examined the
efficacy of force feedback in guiding users toward target points and
engaging users in question-answering with images and diagrams.
Our research demonstrates that integrating pen-based sketching
and force feedback with LLMs can improve user engagement and
reward and foster intuitive physical interactions with an AI agent.
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1 Introduction
Large Language Models (LLMs) offer new possibilities for mul-
timodal interactions in various applications. These applications
leverage and extend the natural language understanding and rea-
soning capabilities of LLMs to support users in various real-world
scenarios such as creative writing [48] and programming [23], cre-
ating or editing images and animations [8, 13], playing games [9],
and seeking mental health support from conversational agents [25].
Multimodal image and audio-based input and output capabilities of
LLMs such as ChatGPT-4 [31] and Google Gemini [11] have marked
significant steps towards human-centered computing.

Despite advancements in LLM-based interactions, a gap exists
in leveraging LLMs for spatial and physical information exchanges.

https://orcid.org/0009-0004-5858-1909
https://orcid.org/0009-0000-2131-4234
https://orcid.org/0000-0001-6437-0463
https://doi.org/10.1145/3706599.3720173
https://doi.org/10.1145/3706599.3720173


CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Soheil Kianzad, Yinan Li, and Hasti Seifi

Existing interfaces primarily focus on text-based interactions, with
some using visual or audiomodalities, but they cannot provide phys-
ical feedback. Haptic devices can enhance user task performance
and enjoyment by guiding the user’s hand (e.g., while drawing)
or simulating real-world physical interactions [19, 29]. Yet, exist-
ing haptic devices need to be programmed for a given task, which
limits their application for ad-hoc information-seeking scenarios.
Integrating haptic devices and LLMs can bridge this gap to enable
physical interactions with images and diagrams for tasks requiring
spatial understanding and manipulation. This integration of haptic
feedback can make digital interactions more intuitive and enhance
the utility of LLMs in visual and spatial interaction tasks.

To bridge this gap, we present SenseiPen, an LLM-based hand-
held haptic agent (i.e., AI agent) that provides new pen-based spatial
and interactive possibilities by integrating verbal, visual, and haptic
modalities (Figure 1). SenseiPen’s hardware is a handheld robotic
device with a small footprint, designed to augment Apple Pencil
and iPad with haptic sensing (orientation, acceleration) and out-
put (force, vibration). It takes the user’s verbal input, images and
sketches, handwriting, and touch gestures, understands the user’s
intention and command by connecting to GPT-4V (vision preview),
and produces force feedback and visual hints synchronized with a
verbal response. It can make visual diagrams interactive and simu-
late the feel of physical phenomena (e.g., gravity forces). Thereby,
SenseiPen introduces a tangible layer to communications with AI,
effectively blending the virtual with the physical.

We ran a user study with 16 participants to assess SenseiPen’s
user experience. We evaluated the system’s performance in guiding
the user’s hand to various locations on a tablet and investigated
how users perceived and interacted with the LLM-based haptic pen
and what challenges they faced in using it. Our results showed the
capability of the system to dynamically generate movement and
force feedback based on user queries and suggested that haptic
cues can enhance user engagement during question-answering
interactions with images. We discuss the implications of our work
for haptics research and outline the remaining challenges for our
ongoing and future work. Our contributions are:

• SenseiPen, a 2D haptic device and software system that in-
tegrates force feedback technology with an LLM to support
multimodal interactions with digital pens and tablets.

• Data on the device’s position accuracy and speed in reaching
targets on a tablet when held by 16 users.

• Results on the impact of force feedback on user engagement
with images, demonstrating the potential of haptics to en-
hance the interaction quality with LLMs.

2 Related Work
Interfaces for Large LanguageModels. Interacting with computers

through natural language has been a focus of research for decades,
with early systems like Put-that-there [3] and Quickset [6] enabling
users to issue voice commands combined with pen and gesture
inputs. More recently, the surge in LLMs has inspired the devel-
opment of graphical interfaces to enhance user interactions. For
example, Graphologue generates real-time interactive graph vi-
sualizations from LLM outputs for question-answering [15], and
VISAR integrates a text editor with an interactive canvas to support

creative writing [48]. These interfaces and visualizations augment
LLM outputs, improving user sense-making and creativity. Simi-
larly, systems like DirectGPT combine LLMs with direct manipula-
tion principles to enable text and image editing [27], while tools
like Instruct-nerf2nerf [13] allow users to modify 3D scenes using
text prompts. For interactive behavior generation, LLMR uses GPT-
4 to plan and add animations and interactivity to virtual reality
scenes [8]. Beyond visualization, researchers have extended LLMs
to create autonomous behavior. Generative agents use LLMs to
observe environments and plan actions [33], while others program
embodied agents, such as robots, where LLMs translate verbal sug-
gestions into expressive robot behaviors [26]. Building on this, our
research focuses on generating haptic behaviors synchronized with
other modalities to enhance user engagement and sense-making.

Pen-based User Interfaces. Pen-based systems have long sup-
ported sketching, designing, and sensemaking. Early innovations
like SketchPad [40] pioneered graphical human-machine interac-
tion through a light pen. Subsequent interfaces, such as Sim-U-
Sketch [18] and VibroSketch [17], helped users learn circuits and
vibrations by recognizing hand-drawn diagrams, while tools like
MathPad2 [21] and Hands-on Math [44] recognized handwritten
formulas to create animations or solve equations. Recent work has
incorporated AI to enhance pen functionality and user experience.
Augmented Math [5] uses optical character recognition (OCR) and
computer vision with a digital pen to transform static math into dy-
namic, interactive documents, while SMath [49] leverages recurrent
neural networks (RNNs) for intelligent, pen-centric interface for
manipulating mathematical expressions. Many pen-based systems
combine sketches [17, 18] and pen gestures [14, 21, 22, 44–46], with
visual feedback and some also provide haptic feedback (e.g., force,
vibration). Our work integrates visual, verbal, and haptic inputs
and outputs in SenseiPen to enable novel pen-based interactions.

Haptic Pens. Haptic pens have been developed for various GUI
applications, with early devices like the Phantom robotic arm pro-
viding force feedback to simulate virtual objects and textures via
a stylus [28, 37]. For pen-and-paper sketching, haptic offers both
passive constraints and active guidance. Comp*Pass [30] allows
semi-active drawing on non-digital surfaces, while I-Draw [10]
enables smooth transitions between guided and freehand draw-
ing for creative expression. Muscle-Plotter [24] and dePENd [42]
use force feedback to guide users in drawing precise shapes. Kian-
zad et al. [19] introduced a force feedback pen with a ballpoint
drive mechanism that assists in following predefined paths while
allowing creative deviations. Besides developing haptic hardware,
creating haptic content is challenging. Becoming a haptic expert
takes years [38], and novices often struggle with programming
force feedback devices and synchronizing haptics with visual and
audio feedback [39]. Recent studies show that LLMs can effectively
produce and explain executable codes. For example, CodeHelp uses
LLMs to provide scalable, on-demand programming support [23].
Our work explores LLMs’ capabilities in generating haptic force
feedback synchronized with visual and audio output for question-
answering on any input image without the need for user program-
ming.
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Haptics in Learning and Education. Haptic technology improves
learning by leveraging embodied cognition reducing cognitive
load [43]. It reinforces visual cues while introducing a new sen-
sory channel, such as weight perception, improving comprehension.
Umetsu and Kashihara [41] show that pseudo-haptic feedback aids
narrative understanding, while Crandall and Karadogan [7] high-
light its role inmaking abstract concepts more tangible, especially in
fields like physics and engineering. Additionally, Kaimoto et al. [16]
demonstrate how bi-directional sketching interactions in Sketched
Reality integrate haptic and visual feedback, bridging virtual and
physical environments for enhanced learning experiences.

3 SenseiPen’s Interaction Framework
We designed SenseiPen as an AI agent with verbal, visual, and
haptic interaction capabilities. The core novelty of our work lies
in incorporating haptics as a primary interaction modality with
a language model, while the visual and verbal modalities work
simultaneously to facilitate free-form communication between the
user and the system.

Verbal Interaction. SenseiPen allows users to ask questions,
issue commands, or provide explanations with other modalities. It
synchronizes LLM’s verbal output with visual and haptic cues to
enhance user comprehension.

Visual Interaction. SenseiPen can process an input image to
understand its content. It also allows users to make rough sketches
with a digital pen directly on a tablet interface and write text to
specify objects in their drawings. This functionality enables users
to clarify instructions and any misunderstandings in real-time. Ad-
ditionally, it can display visual hints like colored markers or text
highlights that dynamically move to reference objects or concepts
it describes.

Haptic Interaction. SenseiPen interprets touch gestures like
tapping and strokes as haptic inputs to the system and outputs
force and vibration cues. User actions, such as tapping on the pen
or making strokes or other gestures with SenseiPen, can convey
commands like requesting for speedup or encouraging the agent.
Resistance by the user against SenseiPen’s movements or moving
the pen in a direction that encounters resistance is also interpreted
as input, with the system actively resisting the user’s movements to
guide them towards or away from specific regions. SenseiPen can
move the user’s hand to assist with tasks such as drawing a straight
line, following a curve, or learning characters in a different alphabet,
offering a kinesthetic learning experience by adjusting its force
feedback in real time based on an analysis of the user’s movements.
This force output not only gives feedback on user actions but also
maintains user engagement. Additionally, the system can generate
vibrations to communicate system delays and task progress. To
achieve this, the system integrates sensors for detecting force and
motion with actuators to provide physical feedback.

4 SenseiPen’s Hardware
Our platform (Figure 2) features a low-cost, handheld haptic device
designed to work with a digital pen and tablet, using the sensing
and computing capabilities of the iPad and Apple Pencil. The entire
hardware system costs under $55.

Haptic Device. The core of SenseiPen is the ballpoint drive
mechanism (Figure 2a, adopted from Kianzad et al. [19, 20]), which
generates 2D force feedback via a rolling ball. To ensure compati-
bility with standard-sized tablets, the ball size was reduced by 50%.
The system uses four coreless gear motors, each rated at 3.7V, with
a maximum speed of 1200 rpm, a no-load current of 60 mA, and a
stall current of up to 200 mA. The motors, fitted with custom 6 mm
metal gearheads, interface with the rubber ball to exert up to 0.65 N
of force under non-skidding conditions. Other components include
sensors, a linear resonance actuator (LRA), and a Nordic nRF52840
chip with Bluetooth Low Energy (BLE) capabilities. This chip en-
ables communication with the tablet for receiving force feedback
commands and processing data from integrated sensors, includ-
ing a PDM microphone, an inertial measurement unit (IMU), and
Near Field Communication (NFC). A 3.7V, 700mAh LiPo recharge-
able battery powers the system for about two hours of continuous
operation.

Key Modifications. SenseiPen’s innovation lies in seamless
integration with Apple Pencil and iPad. The Apple Pencil captures
position, pressure, altitude, and azimuth at 240 Hz, enabling precise
tracking without extra sensors. The iPad processes data in real-time
and transmits force feedback commands to SenseiPen via Bluetooth.
Unlike traditional haptic systems that require extensive onboard
processing, our design reduces complexity by relying on the iPad
for data processing. Additionally, the ballpoint drive’s compact
redesign ensures compatibility with standard tablet dimensions,
improving usability and portability. These innovations enable Sen-
seiPen to deliver advanced haptic feedback at a fraction of the cost
of traditional systems.

5 Connecting Haptic Feedback with LLM
SenseiPen has software functionalities for (1) vision perception
and rendering, (2) speech perception and synthesis, and (3) haptic
perception and control. The system’s unique contribution lies in its
ability to integrate haptic feedback with LLMs like GPT-4V, trans-
forming user input into GPT-4V prompts and providing multimodal
output (Figure 2b).

Vision System. The current implementation of multimodal
interactions with GPT-4V allows for image input but cannot specify
object locations. To overcome this, we use Apple’s Core ML for
text recognition and YOLOv8 for object detection [35], enabling
the system to identify and locate objects and text in images and
sketches for haptic guidance.

SenseiPen monitors visual streams (e.g., images, drawings, hand-
writing) and sends GPT information about detected objects and
changes. Screenshots are periodically captured and processed in a
dedicated thread, ensuring real-time updates to the visual context.
The system also provides visual hints to the user about detected
objects. Detected objects and text, along with their positions, are
sent to GPT upon user request. The initial prompt includes a screen-
shot for context, while subsequent prompts omit it unless the user
modifies the visual context through sketching or drawing.

Speech Perception and Synthesis.We employ Apple’s Speech-
to-Text and Text-to-Speech technologies to enable verbal interac-
tions with SenseiPen. Users can ask questions or describe drawings.
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Figure 2: SenseiPen’s compact ballpoint drive delivers untethered 2D force feedback, integrating sensors and actuators with a
multimodal data processing software pipeline for pen-tablet interactions.

Speech-to-text outputs are combined with spatial data from ma-
chine vision to create context-aware prompts integrating verbal
and visual elements.

SenseiPen uses a custom text synthesizer to handle GPT re-
sponses. This synthesizer queues sentences for spoken output
and controls the flow of speech based on user input and system-
generated haptic commands. When a sentence is queued for speech
synthesis, the synthesizer checks if it includes a command, such as
directing the user to a specific location. If a command is detected,
the system parses the command to execute the corresponding ac-
tion, such as activating haptic feedback to guide the user towards a
target synchronized with the spoken output. The synthesizer also
interacts with the haptic perception and control module to monitor
the user’s progress towards a target position. If the target is not
reached within a set time, the system prompts the user to place the
pen on the tablet or change their grip. This design ensures that the
user receives timely and relevant feedback.

Haptic Perception and Control. The system manages Sen-
seiPen’s position and force feedback. When a SenseiPen device
is detected, the controller establishes a connection and identifies
the required communication parameters. It transmits pulse width
modulation (PWM) commands to control force feedback on the
tablet. The controller tracks touch gestures, IMU data, and Apple
Pencil movements to adapt force feedback. It adjusts PWM values
to align with the user’s hand orientation. For precise navigation,
a PID controller fine-tunes the force feedback based on the target
position.

This module makes user drawings and annotations interactive
by generating force feedback through Swift’s dynamic execution
of JavaScript. The platform lets developers script interactions in
TypeScript without compile-time development. For example, users
can sketch a spring and mass system and ask SenseiPen to make it
interactive. SenseiPen parses the request and uses GPT to generate
JavaScript code, defining haptic feedback from visual data and
speech input. Scripts run in real-time, using SenseiPen’s setForce()
and getPosition() to adapt force feedback to actions like extending

or compressing the spring. SenseiPen continuously evaluates the
script to ensure feedback adapts dynamically.

GPT Error Analysis and Correction. Incorporating responses
generated by GPT-4V into our system frequently introduced errors,
primarily due to the unpredictable nature of the model’s output.
Within the context of question answering on images, a signifi-
cant portion of these errors originated from the language model’s
attempts to integrate force feedback instructions into haptic navi-
gation commands, often resulting in the omission or inclusion of
special characters. We built SenseiPen’s text synthesizer to identify
and address such cases, thereby avoiding any failed force feedback
integrations.

6 System Evaluation
We evaluated SenseiPen in a preliminary user study with two goals:
(1) assessing the precision and speed of the force feedback mecha-
nism in guiding user hand movements and (2) testing user engage-
ment with SenseiPen against a baseline with only verbal and visual
feedback. The study was approved by the university’s ethics review
board.

Participants.We recruited 16 participants (11 male, 5 female)
with a mean age of 23.75 years (std = 1.89). Five participants had
prior experience in haptics, including technologies such as vibrotac-
tile feedback in phones and VR controllers (n=3), mid-air ultrasound
(n=1), and force feedback devices (n=1). Nine participants had ex-
perience with LLMs; four were daily ChatGPT users, and five had
been involved in projects utilizing language models. Five of the
participants were daily tablet users.

Study Procedure. Each session took 60-75 minutes and partic-
ipants received $15 Amazon gift cards as compensation. After a
background questionnaire and a SenseiPen demonstration, partici-
pants were asked to complete two tasks.

The first task is the Navigation Task. Participants used the Sen-
seiNavigation app, which presented random red dots on the screen.
They were instructed to hold the pen stationary on the tablet, al-
lowing SenseiPen to guide their hand toward a target dot. Each
participant completed two practice trials, followed by 10 main trials,
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emphasizing response speed and interaction fluidity. A condition
without tactile feedback was not included in the Navigation Task
because prior study by Richard et al. [36] has demonstrated that 2D
force feedback not only provides more efficient guidance in navi-
gation tasks compared to vibrotactile feedback but also imposes a
lower cognitive load on users.

The second task, the Question-Answering Task, was designed
to explore our hypothesis that adding force feedback enhances the
guided learning dialogue, making interactions more engaging, re-
warding, and effective in maintaining user attention. Participants
used the SenseiInsight interface (Figure 1) to ask questions about
two diagrams: a neuron’s structure and the solar system. Each par-
ticipant experienced two conditions: (A) a baseline condition with
verbal and visual responses, where the language model highlighted
and narrated the diagram elements, and (B) a SenseiPen condition
that added haptic feedback, physically guiding the user’s hand to
the specific parts of the diagram being described. Each participant
completed both scenarios (one per diagram) under each condition,
resulting in four trials in total. The order of conditions and diagrams
was counterbalanced to mitigate learning effects. The questions
posed to the LLM were controlled across participants to ensure
consistency in content and difficulty level.

In the final interview, we asked how their interactions with the
tool differed from their previous LLM experience, its usefulness in
supporting their queries, any challenges they faced, and potential
applications for SenseiPen.

Data Collection. In the first task, we logged the time and tra-
jectory of the pen guiding the participant to the target dot, along
with the user’s hand pressure on the pen. For the second task, user
engagement was measured using the User Engagement Scale (UES-
SF) [32], capturing ratings after each experimental condition. We
also recorded participants’ questions, interaction times, and overall
usability via the System Usability Scale (SUS) [4] after finishing all
tasks. We also made video recordings of user interactions and their
interview responses.

7 Results of User Evaluation
SenseiPen’s Navigation Efficiency. Navigation between two ran-
dom dots averaged 1.93 seconds (std=0.75). The total average dis-
tance covered was 66.01 mm (std=13.10 mm) across trials. The
average velocity was 37.89 mm/s (std=12.58 mm/s). The average
pen tip pressure was 47% of the full-scale pressure (std=12%). The
Pearson correlation coefficient of (r=0.18, p=0.52) indicates a weak
non-significant linear relationship between pressure and average
velocity, suggesting minimal association.

The average deviation between the SenseiPen’s trajectory and
the optimal path was 2.38 mm (std=0.92 mm), outperforming the
6.78 mm error (std=4.88 mm) reported for the Phasking Pen [19]
and 4.07 mm (std=3.03 mm) reported for the Muscle-Plotter [24] in
similar position control tasks when following a trajectory. When
considering the direct line between the initial and target dots, the
average deviation could reach up to 20% of the distance to the
target. The largest deviation often occurred at the beginning of the
navigation task, perhaps due to the users adjusting their grip to
balance their own applied pressure with the platform’s generated
force. Figure 3 visualizes the velocity, pressure, and position errors

Figure 3: Velocity and positional error measurements in the
navigation task. Participants are color-coded. Each circle
shows one trial, with circle size indicating pressure exerted;
larger circles show higher pressure.

for all participants and trials, showing that 86.25% of trials have
errors smaller than 4 mm. Some participants achieved speeds 3 to 4
times faster than the average while maintaining near-average error
levels.

Results of the Question-Answering Task. The average rat-
ing on the System Usability Scale (SUS) was 72.06 with a standard
deviation of 13.12, denoting an acceptable usability according to
Bangor et al. [2]. The UES-SF scores are based on ratings on multi-
ple statements and thus are treated as interval variables. We used
the paired sample t-test to compare the ratings for SenseiPen and
baseline versions. Results were reported at a 0.05 significance level
using a two-tailed p-value.

UES-SF Factor 𝑡 𝑃 𝜂2𝑝

Aesthetics Appeal .909 .378 .052
Focused Attention 1.801 .092 .178
Perceived Usability .915 .375 .053
Reward 3.521 .003 .453
Overall Score 3.110 .007 .392

Table 1: Results of the paired sample t-test for UES-SF factors
and the averaged overall score. Test results for Reward and
Overall Score showed a significant difference between the
SenseiPen and baseline versions at 𝑃 < .05. The 𝑑 𝑓 is 15 for
all factors.

Table 1 summarizes the paired sample t-test results. The test
showed significant differences in the participant ratings for Re-
ward and Overall Score, with large effect sizes. Based on the rat-
ings, SenseiPen provided a more rewarding experience to users
after interactions (mean=4.40, std=0.49), compared to the baseline
version (mean=3.75, std=0.88). The Overall Score was also signifi-
cantly higher for SenseiPen (mean=3.96, std=0.41) than the baseline
(mean=3.58, std=0.59).
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We categorized participant questions and found no notable differ-
ences in the type and quantity between the SenseiPen and baseline
systems. In total, 158 questions were asked with 86 directed at the
SenseiPen version and 72 at the baseline version. On average, they
posed about five questions per diagram.

QualitativeResults from Interviews.Most participants (n=11)
reported that with the integration of haptic feedback and visual
cues, SenseiPen felt more interactive and engaging than previous
experiences with ChatGPT. They appreciated the ability to use
voice commands, handwriting, and the inclusion of PDFs, which
provided different ways of input beyond traditional typing and text
input. Some (n=4) highlighted the system’s ability to recognize and
respond to visual elements, such as diagrams or drawings, as a
significant improvement. This feature allowed users to focus on
specific points of interest and receive targeted explanations. Some
mentioned drawbacks for SenseiPen, such as response delays (n=3)
and the inability to interrupt or redirect the system’s responses
(n=1). Three participants wanted it to be thinner for holding and
drawing, with one participant mentioning the pen obstructed their
view.

Participants imagined using SenseiPen for various applications.
Most (n=11) saw its potential for education, noting how haptic
features and visual aids could enhance learning in academic work,
scientific discussions, e-textbooks, online classrooms, or skill ac-
quisition. For example, two users mentioned the suitability for
children’s education and one participant expressed interest in car
maintenance, where the system would provide step-by-step guid-
ance on how to fix a car based on a picture they uploaded. Some
participants saw the potential for the system to increase engage-
ment in gaming applications (n=4), or to support individuals with
visual impairments in understanding the spatial elements in an
image (n=3). Others proposed using the system to facilitate code
generation from UI drawings, display eye gaze sequences on a page,
or guide the user’s hand in document signing or UI navigation.

8 Discussion
The results of the Navigation Task demonstrate efficient target
acquisition with minimal deviation, exceeding comparable systems.
In the Question-Answering Task, higher scores for reward and
overall experience suggest that force feedback enhances the guided
learning dialogue. Qualitative feedback reinforces this, although
response delays and lack of interruption mechanisms were noted.

While YOLOv8 could enable more natural target detection, the
vision system combining Apple’s Core ML and text-based detection
proved more adaptable for interacting with diagrams and handwrit-
ten content, leading to more precise and flexible haptic guidance.

Ongoing Work: Interactive Physics Simulation of User
Sketches. In addition to guiding user’s hand, we are exploring how
combining haptic feedback with LLMs could render user-sketched
diagrams interactive. We have developed SenseiPhysics application,
enabling users to draw physics concepts (e.g., a spring-mass system)
and describe them to GPT. The system generates code based on
these descriptions, and SenseiPen simulates physical sensations,
such as the force exerted by a spring. We have pilot tested the
application where users sketched various physics-related scenarios,
such as pendulums, pulley andmass systems, ball free falls or rolling

down a hill, object collisions, spring and mass systems, parabolic
ball throw. In about half of the scenarios, SenseiPhysics successfully
generated code with haptic feedback for the sketch.

We believe that this modest success rate is primarily due to three
reasons. First, the novelty effect on users and the lack of experience
in designing haptic interactions can lead to prompts that vary in
clarity and detail which impacts the effectiveness of the generated
simulations. Second, the absence of a specialized haptic compiler
for haptic rendering adds a layer of complexity to the task. Trans-
lating user’s drawing and their descriptions into executable code
that accurately simulates the haptic feedback presents a significant
challenge. Third, the static nature of user drawings requires a level
of interpretation to determine the object’s dynamic behaviors and
movements. The absence of movement in the drawings means as-
sumptions have to be made about how objects react under various
forces, leading to a disconnect between an intended simulation and
generated haptic feedback. A potential direction is to leverage a
physics engine like RealityKit for more sophisticated and interac-
tive simulations [1]. RealityKit allows for runtime scene changes
without the need for pre-compilation, supporting dynamic content
integration such as loading 3D models or adding and removing
entities based on user interactions.

Limitations and Future Work. This work has several limita-
tions that can be addressed in future research. The first limitation
is the SenseiPen’s response delay (5-10 seconds), primarily due to
the time required to retrieve responses from the GPT-4V API, and
the lack of a mechanism to promptly interrupt or redirect system
responses. To address these aspects, we plan to integrate on-device
LLMs, such as Google’s Gemma 2B [12], which requires only 2.5
GB of RAM usage, making it highly efficient for integration on
the iPad. Second, our study explores short-term interactions with
SenseiPen in a controlled setting. Future work can assess its utility
in personalized and long-term tasks to reveal how user strategies
and experiences evolve over time. Finally, we did not investigate
SenseiPen’s design for emotional communication. This study fo-
cused on the integration of LLM and force feedback, excluding
vibration to isolate the unique contribution of our SenseiPen. Fu-
ture research could investigate the role of vibration in directing
attention to the LLM agent. Future research could design personal-
ity profiles [34] for SenseiPen that will make the pen more or less
physically active or lead to different force, motion, and vibration
profiles synchronized with non-verbal sounds [47]. Furthermore,
including long-term memory for SenseiPen similar to generative
agents by Park et al. [33] could turn the haptic agent into a low-cost
handheld companion for lifelong learning.

9 Conclusion
We designed SenseiPen to enable new user interactions with lan-
guage models through the integration of multimodal and physical
feedback. Our study suggests that haptic feedback can improve user
engagement and promote a greater sense of interactivity with LLMs.
Our ongoing work focuses on on-demand force feedback haptic
content creation for user-drawn physics simulations. As language
models gain popularity and usage among the public, we aim to
facilitate tailored physical experiences for all users.
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