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Abstract
Physically assistive robots (PARs) support people with disabilities
in performing daily tasks, yet there is limited research on how PAR
movements (e.g., speed) affect user attitudes and emotions (e.g., dis-
comfort, robot’s competence). Since lab-based studies are limited in
scalability and diversity of participants, we explored video-based
crowdsourcing as a method to collect user perceptions in three
caregiving tasks with a robotic arm (forearm cleaning, blanket
manipulation, and dressing). In study 1, 16 participants assessed
how well different video angles and sound conditions simulated
in-person interactions. The results showed high similarity ratings
between videos and real experience. In study 2, 110 online partici-
pants rated the robot’s social attributes and their own emotional
responses while observing a person experiencing those tasks in
videos. Our results show that user ratings are influenced by the
task, PAR motions, and users’ general attitudes and highlight the
potential of crowdsourcing as a method for studying PARs.

CCS Concepts
• Human-centered computing→ User studies.
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1 Introduction
Physically assistive robots (PARs) can improve accessibility and
independence for individuals with disabilities in performing daily
tasks. As PARs continue to develop, they are expected to assist
in increasingly complex tasks, including dressing, bathing, object
handling, eating, mobility assistance, limb replacement, limb reha-
bilitation, and body augmentation [39]. During these tasks, PARs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI EA ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1395-8/25/04
https://doi.org/10.1145/3706599.3720132

contact the user’s body or manipulate objects in close proximity to
users. Thus, while technical advancements are critical, considering
user attitudes and emotions towards the social attributes of robots,
is also important for successful human-robot interaction (HRI) and
user adoption. Such perceptions focus on topics like anthropomor-
phism, likeability, warmth, competence, discomfort, etc., which
can determine how the perceived attributes affect the quality of
interaction with robots [7, 14].

Prior research has shown that robot movements, such as retrac-
tion speed in human-to-robot handover [43] or the direction of a
robot’s approach [63], can influence user perceptions, there is lim-
ited work on user perception of PARs and how their movement (e.g.,
speed) in the personal space around the user’s body can affect user
perceptions during assistive tasks. Moreover, gathering sufficient
data on a large number of movement-related factors in laboratory
settings is challenging. The limited diversity of in-lab participants
further reduces the generalizability of in-lab findings. Previous HRI
research suggests that online video-based experiments can inform
the design of robots’ appearance and direction of approach [4, 63].
While direct contact cannot be replicated in online studies, neu-
roscientific research suggests that simply observing actions can
activate premotor neurons in the brain, leading to vicarious experi-
ence of actions, sensations, and emotions [5, 29, 50]. This literature
suggests that, if designed well, videos can help collect large data
on user perceptions of PARs.

In this work, we assessed user perceptions of PAR movements
with diverse participants through video-based crowdsourcing. We
designed three caregiving tasks (forearm cleaning, blanket manipu-
lation, and dressing) using a Kinova Gen3 [32] robotic arm and ran
two studies. In Study 1, lab participants rated how well different
video angles and soundtracks simulated real physical experiences.
All videos received high similarity scores (over 7 on a 1 to 9 scale)
suggesting the efficacy of videos but participants overall preferred
the first-person view with the robot’s movement sound. In Study
2, 110 online participants watched first-person videos of a person
interacting with the robot under varing robot’s movement speed
and a task-specific distance variable: the cleaning range for forearm
cleaning, lifting distance for blanket manipulation, and gripper-
to-arm distance for dressing, then completed the Robotic Social
Attributes Scale (RoSAS) [14] and the Valence, Arousal, and Dom-
inance (VAD) [12] questionnaires. Results showed that people’s
perceptions depend on the task being performed, the proximity of
the robot to sensitive areas of the body, and the nature of the robot’s
movements. Also, their pre-established attitudes toward robots im-
pacted ratings on social attributes and emotional responses. Our
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contributions are (1) An exploration of how different video pre-
sentation methods influence participants’ perceived similarity be-
tween videos and actual experiences; (2) Findings on how robot
movements and user background impact user emotions and the
perceived social attributes of a PAR in three assistive tasks from a
crowdsourcing study.

2 Related Work
User Perception of Physically Assistive Robot. The past decade has

seen a drastic increase in research on physically assistive robots [39]
and tasks such as navigation [15, 52, 66], feeding [8], and delivering
medication to patients [46]. In contrast, there has been relatively
little research in understanding users’ emotions and perceptions
toward the PAR. Research shows that users form a perception of
robots based on interaction parameters (e.g., duration, location,
speed) of the robot [55]. For example, one study evaluated the
social perception of human-robot handovers by examining user
attitudes towards various reaction speeds, arm positions, and grasp
types [43], while another showed that parameters such as pressure
and duration impact users’ comfort levels in robot hug [11]. While
these studies on humanoid and industrial robots provide valuable
insights into the design of robots for specific HRI tasks, PARs fun-
damentally differ from these robots because they maintain a more
enduring and intimate interaction space with humans. Our work
provides data on how PAR movements influence users’ perceptions
and emotions.

Online Studies of Human-Robot Interaction. Online HRI experi-
ments have expanded significantly [2, 4, 26, 27, 45, 56], examining
factors such as trust, fear, and robot characteristics like human-
ness and uncanniness [1, 4, 45, 56], as well as persuasiveness, trust,
and reliability [31], and the dynamics of robot-human approach
direction [63].

Similarly, some physical HRI (pHRI) researchers have used video-
based studies. Willemse et al. [61] gathered online data on the pleas-
antness of stroking touches, confirming prior in-lab findings and
revealing interactions between stimuli types and stroking velocity.
Law et al. [34] explored the impact of a robot’s touch on trust, help-
ing to narrow conditions for future lab studies. Others used videos
to investigate the interplay between robot touch and factors like
proactivity, social appearance, and error presence on user percep-
tions [17, 18]. We investigate whether video-based crowdsourcing
can offer insights into more complex assistive tasks involving sus-
tained physical contact with a robot.

A significant challenge in online studies of pHRI is designing
videos that effectively simulate the experience of direct interaction
with robots. Researchers have adopted varied video designs for
their studies. For instance, Willemse et al. [61] utilized first-person
view to capture the stroking interactions, while others employed
third-person long-shots to capture human-robot touch [17, 18, 34].
Kunold et al. [33] used third-person long-shot videos and found
no evidence that video-based studies elicit the same emotional
or behavioral responses as live interactions. Thus, little is known
about how effective different video angles are in conveying pHRI.
Past research showed that sounds made by robots influence hu-
man perceptions during interactions [65], particularly affecting

perceived movement quality, while having less impact on func-
tional aspects like safety and capability [51]. Lohse et al. [35] found
that participants preferred a robot’s sound to be congruent with its
movements. Our work explored various video angles and the pres-
ence or absence of robot noises to determine which combination
best replicates the real in-lab experience for online observers.

Neuroscientific Insights: Mirror Neurons and Empathy. Whenever
we see what happens to others, we not only understand what they
experience but also often empathically share their states. In the
nineties, a series of experiments showed that some premotor neu-
rons, called mirror neurons, fired during both action execution
and the observation of the same action [49]. Recent neuroscien-
tific findings suggested that observing others being touched on
hands [20], legs[30], neck, or face[10] can trigger activity in cer-
tain brain regions that are also responsive when we are touched
on the same body part [29]. This vicarious effect is likely the re-
sult of the human ability to empathize with others cognitive and
emotional states [28, 60]. It is supported by the fact that vicarious
experience of both pleasant and unpleasant somatosensory stimuli
has been shown to activate regions of the cortex associated with
imitation and socio-emotional behavior [13, 23, 38]. Neuroscience
studies often assess empathy using Empathy Quotient (EQ) [6] and
Interpersonal Reactivity Index (IRI) [19]. Research has shown that
higher scores on IRI subscales are linked to higher levels of vicari-
ous activation [5, 22, 44, 53, 54]. Our work builds on evidence that
observing another person being touched activates neural circuits
similar to those involved in actual touch.We collect participants’ IRI
scores to assess their empathy levels in our crowdsourcing study.

3 Experimental Set-up and Physically Assistive
Tasks

We used the Kinova Gen3 robotic arm (7-DOF) with a Robotiq 2F-85
gripper and integrated vision (Omnivision OV5640 color sensor,
Intel RealSense D410 stereo depth sensor) for three assistive tasks.
All communication ran through ROS. For each task, we selected two
values for each of the motion-related variables (Figure 1), informed
by literature, pilot testing, and the varying sensitivity of different
body areas. Research suggests that tactile sensitivity varies across
the body, with the forehead being the most sensitive, followed by
the arm, while the legs exhibit the lowest sensitivity [3]. Because
our tasks involve different contact locations —the forearm for clean-
ing, the legs for blanket manipulation, and the arm, shoulder, and
head for dressing— these differences in sensitivity may influence
participants’ perceptions of the robot’s touch. By considering these
variations, we aimed to capture a range of physical interactions
that reflect real-world assistive scenarios.

Forearm Cleaning. The robot uses a damp sponge attached to
a cube to remove a washable blue marker from the participant’s
forearm by moving back and forth. The first variable, Cartesian
velocity, has two speeds: 3 cm/s (reported as the most pleasant
for stroking touch [36, 61]) and 30 cm/s (noticeably different and
outside the pleasant range [9, 36]). The second variable is cleaning
distance, with two stroke lengths: 6 cm and 12 cm.

Blanket Manipulation. The participant sits in a chair with
their feet on a footrest, covered by a blanket. The gripper grasps
the edge of the blanket from a specified location to uncover the legs.
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(a) Task 1: forearm cleaning (b) Task 2: blanket manipulation (c) Task 3: dressing

Figure 1: Setups for the three assistive tasks.

Movement speeds are 3 cm/s and 30 cm/s, similar to the previous
task. The second variable is blanket lifting height, set at either 10
cm or 40 cm above the body.

Dressing. The experimenter places two red stickers on the par-
ticipant’s arm at the elbow and shoulder, and with the arm held
horizontally, the gripper moves a cloth along the arm and releases
it at the marked endpoint. The speed variables remain unchanged.
The second variable is the distance between the gripper and the
skin. Using a sleeve with a large hole, positioning the fist at the
upper edge provides about 2 cm of distance (with friction felt on
the upper arm), while the lower edge creates about 8 cm of distance
(with friction on the opposite surface).

4 Study I: Evaluating Video Angles and
Soundtracks for Simulating PAR Experiences

The lab study used videos with varying camera angles and sound-
tracks to assess which felt most similar to reality.

4.1 Methods
VideoConditions.Wefilmed the videoswith three iPhones (record-
ing at 30 fps, 1080p) capturing simultaneously from three angles
(Figure 2): a first-person view simulating the participant’s perspec-
tive; a third-person long-shot view capturing both the participant
and the robot and a comprehensive view of the interaction and
the surroundings, and a third-person close-up view of the robot
arm’s contact with the participant. A fourth video combined all
three views into one frame. We also used two soundtracks: one
with the original robot movement noises and another muted. For
the combination video, we used the audio from the first-person
view. This resulted in 8 video combinations for each trial.

Procedure.We began the user study with a background ques-
tionnaire. Since this study was focused on assessing different video
conditions, we did not include all four variations of robot motion
for each task. Instead, we used the lower speed and shorter distance
combination for all three tasks. During the main session, the par-
ticipant experienced the three assistive tasks with the robot arm in
a randomized sequence. After experiencing each task, the partici-
pant watched the eight video combinations in a random sequence
and rated how similar the videos felt to the in-person experience
with the robot on a scale of 1 (totally different) to 9 (the same). We

conducted a brief interview at the end to identify the factors that
influenced participants’ ratings.

Participants.We recruited 16 participants (11 male, 5 female).
The participants had a mean age of 24.9 years (ranging from 23
to 29). Among them, 6 had prior experience in robotics, 2 were
novices who had seen some commercial robots, 1 beginner who
had interacted with commercial robots, 2 were intermediates who
had designed, built, or programmed robots, and 1 was an expert
who frequently designed or programmed robots. The participants
received $15 for a 75-minute study.

4.2 Results of Video Proxy Study
The average ratings for all video combinations ranged from 7-9 (out
of 9), suggesting that all video conditions felt highly similar to the
actual experience. Videos with sound are consistently rated higher
than muted ones across all scenarios.

All similarity ratings violated the assumption of normality. Thus,
we applied the aligned rank transform (ART) for non-parametric
factorial ANOVA [62] on the data. The Task factor had a statistically
significant effect on the similarity ratings of videos to the real ro-
bot experience with a small to medium effect size (𝐹 (1, 15)=4.7192,
𝑝=.0095, 𝜂2𝑝=.03). Post hoc pairwise comparisons using ART-C [21]
revealed that task 1 (𝑀=7.94, 𝑆𝐷=1.45) was rated significantly
higher than task 3 (𝑀=7.4, 𝑆𝐷=1.77) with a p-value of .0078, while
no significant differences were found between task 1 and task 2
(𝑀=7.81, 𝑆𝐷=1.39) or between task 2 and task 3. Additionally, no
other main effects or interaction effects were observed.

In post-study interviews, participants expressed varied prefer-
ences for audio and video angles. Most (n=12) preferred sound,
while some (n=3) preferred muted audio, and one had no prefer-
ence. For video angles, eight favored the first-person view, while
other liked the long-shot (n=3), a combination of views (n=2), or
close-up shot (n=1). One expressed a preference for both long and
close-up views, and another mentioned different tasks might re-
quire different views.

Quantitative analysis showed no significant preference for shoot-
ing angles or soundtracks, but qualitative differences emerged. Since
the videos had similarly high ratings, we selected the first-person
view with the original soundtrack based on the qualitative data for
the online crowdsourcing study.
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5 Study II: Evaluating User Perceptions of PAR
Movements Through Crowdsourcing

We conducted an online, video-based study to gather large scale
data on user perceptions of the PAR’s social attributes and emo-
tions when performing the assistive tasks with different speeds and
distances.

5.1 Methods
Participants. We used Prolific [47] crowdsourcing platform to
recruit 110 new participants (55 male, 55 female). We limited the
participation requirement for recruiting quality participants with
more than 1000 tasks with a success rate of 98% or greater. The
participants had a mean age of 40.6 years (ranging from 21 to 71)
and all were based in the US. Among them, 12 participants had
prior experience in robotics, including 1 novice, 6 beginners, and 5
intermediates. Participants were compensated $6 upon completing
the 45-minute study and passing the attention checks.

Procedure. The study began with a background questionnaire.
All participants completed the Negative Attitudes Toward Robots
(NARS) [40] and the IRI questionnaires to assess their attitudes
toward robots and empathy. They then watched videos of three
assistive tasks in random order, with four video variations per task
(2 speeds × 2 distances) shown randomly. After watching each
video, participants completed the RoSAS and VAD questionnaires.

5.2 Results of Online Crowdsourcing Study
Figure 3 shows the average ratings for the tasks and motion con-
ditions. Overall, competence, user valence, and dominance were
moderate, while discomfort, warmth, and arousal remained moder-
ate to low in all conditions.

Correlation of User Ratings. Pearson correlation across user
ratings for the tasks andmotion parameters showed a moderate pos-
itive correlation between valence and competence (𝑟=0.64, 𝑝<.001),
suggesting higher competence ratings are linkedwithmore pleasant
feelings. Also, valence exhibited a moderate negative correlation
with discomfort (𝑟=-0.54, 𝑝<.001), indicating that more pleasant
emotional responses were linked with lower discomfort with the
robot. All other correlations were small or negligible. Thus, we
analyzed each rating separately below.

Impact of Motion Parameters on User Ratings. We ran two-
way repeated measures ANOVAs (Table 1) to examine how speed
and distance affected RoSAS and emotion ratings for each task.
The six ratings were treated as interval variables, and the assump-
tions of sphericity and normal distribution were satisfied. For task
1, speed, cleaning distance and their interaction, significantly in-
fluenced ratings of competence, warmth, and discomfort. Over-
all, participants rated the robot as more competent at the lower
(𝑀=4.52, 𝑆𝐷=2.11) than the higher speed (𝑀=4.24, 𝑆𝐷=2.04), and
the longer (𝑀=4.57, 𝑆𝐷=2.11) than the shorter distance (𝑀=4.19,
𝑆𝐷=2.04), with the effect being more pronounced at higher speed.

(a) First-person view (b) Third-person long-shot view (c) Third-person close-up view

Figure 2: Three different video angles for the forearm cleaning task.

Figure 3: Participants’ ratings of RoSAS and VAD across different speed and distance conditions for the three tasks. For the
X−axis labels, ‘S’ represents Speed and ‘D’ represents Distance. For example, ‘S3_D6’ indicates a speed of 3 cm/s and a distance
of 6 cm.
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Participants also perceived the robot as warmer but also more
discomforting at the lower (warmth:𝑀=1.94, 𝑆𝐷=1.43, discomfort:
𝑀=2.96, 𝑆𝐷=2.02) than the higher speed (warmth:𝑀=1.65, 𝑆𝐷=1.17,
discomfort: 𝑀=2.53, 𝑆𝐷=1.74) and the shorter (warmth: 𝑀=1.86,
𝑆𝐷=1.38, discomfort: 𝑀=3.11, 𝑆𝐷=2.07) than the longer distance
(warmth: 𝑀=1.72, 𝑆𝐷=1.23, discomfort: 𝑀=2.38, 𝑆𝐷=1.69), with
the effect of distance on warmth and discomfort being more pro-
nounced at the lower speed. Valence ratings showed a significant
main effect of distance and interaction effect, with participants
feeling happier at the longer (𝑀=5.52, 𝑆𝐷=1.70) than the shorter
distance (𝑀=4.96, 𝑆𝐷=1.73). The effect was more pronounced at the
higher speed. Speed had a significant effect on arousal, with partic-
ipants feeling more excited at the higher (𝑀=4.00, 𝑆𝐷=2.10) than
the lower speed (𝑀=3.74, 𝑆𝐷=2.11). Distance significantly impacted
dominance, with participants feeling more in control at the longer
distance (𝑀=5.48, 𝑆𝐷=2.20) than the shorter (𝑀=5.26, 𝑆𝐷=2.22).

For task 2, the blanket lifting distance significantly affected par-
ticipants’ ratings across all six measures with medium to large effect
sizes. Participants perceived the robot as more competent, less dis-
comforting, and warmer at a shorter (competence:𝑀=5.43, 𝑆𝐷=2.28,
discomfort: 𝑀=2.46, 𝑆𝐷=1.76, warmth: 𝑀=1.68, 𝑆𝐷=1.21) than a
longer distance (competence:𝑀=5.02, 𝑆𝐷=2.36, discomfort:𝑀=2.85,
𝑆𝐷=1.94, warmth:𝑀=1.57, 𝑆𝐷=1.07). They also felt happier, calmer,
and more in control in the shorter (valence: 𝑀=5.28, 𝑆𝐷=1.58,
arousal:𝑀=3.63, 𝑆𝐷=2.08, dominance:𝑀=5.43, 𝑆𝐷=2.28) than the
longer distance (valence:𝑀=4.87, 𝑆𝐷=1.73, arousal:𝑀=3.86, 𝑆𝐷=2.01,
dominance:𝑀=5.02, 𝑆𝐷=2.36).

For task 3, speed, distance (between the gripper and the fore-
arm), and their interaction had significant effects on competence
ratings. Participants perceived the robot as more competent at a
lower (𝑀=4.34, 𝑆𝐷=2.03) than the higher speed (𝑀=4.03, 𝑆𝐷=2.01),
and a shorter (𝑀=4.31, 𝑆𝐷=2.07) than the longer distance (𝑀=4.06,
𝑆𝐷=1.97), with the impact of distance being more pronounced at
the lower speed. For warmth and valence, speed showed a signifi-
cant effect. Participants reported higher warmth and happiness at a
lower (warmth:𝑀=1.71, 𝑆𝐷=1.30, valence:𝑀=5.21, 𝑆𝐷=1.67) than a
higher speed (warmth:𝑀=1.62, 𝑆𝐷=1.15, valence:𝑀=4.97, 𝑆𝐷=1.70).

Discomfort, arousal, or dominance ratings were not significantly
affected by the motion parameters.

Influence of Participant Background. Regression results on
how participants’ background influence each rating for each task
showed that NARS-S2 (negative attitudes toward the social influ-
ence of robots) significantly affected the dominance rating in all
three tasks, with p-values of .0016, .0005, and .0014, respectively.
Higher NARS-S2 score was associated with lower dominance rat-
ing, suggesting that participants with more negative attitudes likely
felt having less control on the robot. NARS-S1 (negative attitudes
toward situations of interaction with robots) significantly affected
the discomfort rating for tasks 1 and 3, with p-values of .0192 and
.0392, respectively. Higher NARS-S1 scores were linked to higher
discomfort ratings. Other individual-level variables (gender, age,
IRI) did not significantly affect the ratings.

6 Discussion
Implications of Movement Parameters on User Perceptions
of theRobot. For the forearm cleaning task, all six dimensionswere
significantly influenced by the robot motion. Among the three tasks,
this one was closest to a touching or stroking scenario. Participants
rated the robot as more competent and warmer at a lower speed,
which aligns with research on social touch indicating that stroking
speed follows an inverted U-curve, with the most pleasant sensation
occurring between 3-10 cm/s and lower pleasantness at 30 cm/s [9,
36, 61]. Also, participants were more excited at higher speeds and
felt more discomfort and less happy and in control at a shorter
cleaning distance. This may be because higher speeds create more
intense stimulation due to quick friction along the arm, while a
shorter cleaning range may be perceived as less thorough, showing
less care from the robot.

For the blanket manipulation task, participants strongly pre-
ferred a shorter blanket lifting distance across all six dimensions,
likely because the robot primarily interacted with the feet and legs,
which are less sensitive body parts vs. the upper body or head,
making the lifting distance more important than the speed. People

Factors Competence Warmth Discomfort Valence Arousal Dominance
𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝

S 11.03 .001 .092 27.17 <.001 .200 18.55 <.001 .145 .90 .345 .008 4.81 .030 .042 1.81 .182 .016
D 21.98 <.001 .168 5.85 .017 .051 66.42 <.001 .379 39.84 <.001 .268 .44 .508 .004 5.67 .019 .049
S:D 36.32 <.001 .250 21.40 <.001 .164 29.98 <.001 .216 4.79 .031 .042 .77 .381 .007 3.07 .082 .027

(a) Task 1 - Forearm Cleaning

Factors Competence Warmth Discomfort Valence Arousal Dominance
𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝

S 2.43 .122 .022 .10 .758 .001 .29 .589 .003 .40 .531 .004 .002 .966 .000 .08 .782 .001
D 11.41 .001 .095 7.77 .006 .067 18.82 <.001 .147 18.60 <.001 .146 5.06 .027 .044 17.70 <.001 .140
S:D .61 .435 .006 2.37 .127 .021 .06 .802 .001 .30 .588 .003 .91 .343 .008 .14 .706 .001

(b) Task 2 - Blanket Manipulation

Factors Competence Warmth Discomfort Valence Arousal Dominance
𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝 𝐹 𝑝 𝜂2𝑝

S 13.92 <.001 .113 6.58 .012 .057 .80 .374 .007 6.15 .015 .053 .41 .528 .009 2.90 .092 .026
D 13.18 <.001 .108 2.96 .088 .026 3.49 .064 .031 1.05 .307 .010 3.32 .075 .066 2.35 .128 .021
S:D 5.16 .025 .045 .58 .447 .005 .63 .428 .006 .43 .514 .004 .24 .629 .005 .11 .744 .001

(c) Task 3 - Dressing

Table 1: Results of two-way repeated measures ANOVAs for the six ratings across three tasks. ‘Factors’ refers to the within-
subject factors: ‘S’ for Speed, ‘D’ for Distance, and ‘S:D’ for their interaction. 𝐹 represents 𝐹 (1, 109) in all cases.
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also tend to lift blankets only slightly to uncover themselves, rein-
forcing this preference. For the dressing task, participants rated the
robot as more competent, warmer, and felt happier when the robot
operated at a lower speed, likely due to its proximity to the head.
They also perceived the robot as more competent when the gripper
was closer to the upper surface of the forearm, likely because there
was less friction and fewer tugs at the elbow, enabling a smoother
and more functional movement.

A key distinction of PAR settings is their interaction with body
areas of varying tactile sensitivity, which plays a crucial role in shap-
ing user perceptions. Our results suggest that sensitivity differences
across the body may contribute to how participants experience ro-
bot interactions. The forearm, a relatively sensitive area rich in
mechanoreceptors, responded strongly to speed variations, align-
ing with prior findings on social touch. In contrast, interactions
with the feet and legs during blanket manipulation were influenced
more by movement range than speed, consistent with these areas’
lower tactile acuity. Notably, the dressing task, which involved prox-
imity to the head, a highly sensitive and socially intimate body part,
elicited strong preferences for slower speeds. These findings high-
light the importance of designing PAR movements that consider
bodily sensitivity variations to enhance both physical comfort and
social acceptability. Beyond PARs, our insights can inform broader
applications. For instance, human-robot interactions involving the
arm in PAR settings could provide valuable guidance for cobot
interaction in industrial environments, where robots frequently
collaborate with humans and physical contact is common [16].

Our results provide insights for researchers developing algo-
rithms for PARs [37, 48] and pHRI [24, 25, 55]. These algorithms
can adapt to varying speed and distance parameters depending on
different conditions. Nummenmaa et al.[42] developed bodily maps
of emotions, visually representing areas of the body where individ-
uals experience increased or decreased sensations in response to
various emotions. Similarly, Suvilehto et al.[57] created Touchabil-
ity Maps, relationship-specific body maps indicating where people
allow others to touch them based on emotional closeness. Future
work could explore developing a body map that goes beyond social
touch, focusing on how different movement parameters, such as
speed and proximity, influence people’s feelings of discomfort, fear,
and other emotional responses during physical interactions. This
mapwould help identify thresholds for acceptable robot movements
in relation to various body parts, contributing to more adaptable
and user-friendly PARs.

Participants’ Background Affects the Perceptions toward
the PAR.

Our results indicated that NARS scores influenced user ratings.
Participants with higher negative attitudes toward the social in-
fluence of robots (NARS-S2) scores felt less dominant (in control)
across tasks, aligning with findings that perceiving robots as more
autonomous can reduce users’ sense of control [41, 67]. Those with
more negative attitudes toward robot interaction (NARS-S1) re-
ported significantly more discomfort in the cleaning and dressing
tasks, likely due to the close proximity and direct physical contact
involved, echoing earlier results [58]. Thus, NARS scores appear
predictive of pHRI perceptions and should be collected in PAR stud-
ies. In contrast, gender, age, and user empathy had no effect on user

ratings, suggesting they may be less relevant to control in online
PAR studies.

Limitations and Ongoing Work. Our work has several limita-
tions which provide avenues for future work. First, we acknowledge
that in Study 1, participants experienced both the experiment and
video review in close succession, which may have led their immedi-
ate recollections to influence their video-based evaluations. Second,
we acknowledge that online videos cannot fully capture the tactile
nuances of real physical interactions, so online ratings may differ
from in-person experiences. Specifically, a study by Tsoi et al. [59]
suggested a significant difference in robot perceptions between
the real and the simulated environment. Thus, future research can
conduct Study 2 in the lab to investigate any mismatches with our
results and evaluate the limitations of crowdsourcing for PAR re-
search. Still, online studies can narrow down the conditions that
must be tested for laboratory studies, allowing future in-lab studies
to focus on the most critical variables requiring direct physical
interaction, making these experiments more feasible and targeted.
Future work could explore the integration of virtual reality (VR) or
commercial haptic devices to better replicate physical interactions
and provide a more immersive and tactile experience in online
environments [64] as VR offers richer spatial perception (e.g., envi-
ronmental cues and depth) than 2D videos, while wearable haptics
enable remote participants to physically sense the robot’s contact.
Third, this study did not involve participants with physical im-
pairments or experience using assistive technologies. While our
findings provide insights into general perceptions of PARs, future
research should include individuals who are more representative of
the intended user population to improve the utility of the results for
PAR development. Fourth, we focused on the perception of a subset
of motion parameters and assistive tasks in the U.S. Future work
can evaluate other movement variables (e.g., force or trajectory) and
assistive tasks. Also, as touch is a culturally interpreted, non-verbal
form of communication, future studies should investigate whether
cultural differences influence responses to PARs by studying pop-
ulations beyond the U.S. Finally, we acknowledge that our study
examined perceptions during initial interactions with PARs, yet as-
sistive robots are typically used over extended periods. We focused
on first interactions because there is limited research on how users
initially respond to PAR motion, an essential baseline before exam-
ining longer-term shifts in perception. Future longitudinal studies
will build on these findings to investigate how familiarity and trust
develop over time, providing a more comprehensive understanding
of users’ evolving attitudes toward assistive robots.

7 Conclusion
We explored the use of online video-based crowdsourcing to eval-
uate user perceptions of a PAR across three different caregiving
scenarios. Our results indicated that people’s perceptions toward
the PAR are complex and highly context-dependent, varying based
on specific factors such as the task being performed, the proximity
of the robot to sensitive areas of the body, and the characteristics of
the robot’s movements. Also, we found the influence of pre-existing
attitudes toward robots on both the ratings of social attributes and
emotional responses during the interaction. This study underscores
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the value of crowdsourcing as a scalable tool for gathering user
data about PARs.
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